Подпишись и читай
самые интересные
статьи первым!

Квантовая запутанность: теория, принцип, эффект. Квантовая запутанность становится еще запутанней Открытие квантово механической запутанности

  • Перевод

Квантовая запутанность – одно из самых сложных понятий в науке, но основные её принципы просты. А если понять её, запутанность открывает путь к лучшему пониманию таких понятий, как множественность миров в квантовой теории.

Чарующей аурой загадочности окутано понятие квантовой запутанности, а также (каким-то образом) связанное с ним требование квантовой теории о необходимости наличия «многих миров». И, тем не менее, по сути своей это научные идеи с приземлённым смыслом и конкретными применениями. Я хотел бы объяснить понятия запутанности и множества миров настолько просто и ясно, насколько знаю их сам.

I

Запутанность считается явлением, уникальным для квантовой механики – но это не так. На самом деле, для начала будет более понятным (хотя это и необычный подход) рассмотреть простую, не квантовую (классическую) версию запутанности. Это позволит нам отделить тонкости, связанные с самой запутанностью, от других странностей квантовой теории.

Запутанность появляется в ситуациях, в которых у нас есть частичная информация о состоянии двух систем. К примеру, нашими системами могут стать два объекта – назовём их каоны. «К» будет обозначать «классические» объекты. Но если вам очень хочется представлять себе что-то конкретное и приятное – представьте, что это пирожные.

Наши каоны будут иметь две формы, квадратную или круглую, и эти формы будут обозначать их возможные состояния. Тогда четырьмя возможными совместными состояниями двух каонов будут: (квадрат, квадрат), (квадрат, круг), (круг, квадрат), (круг, круг). В таблице указана вероятность нахождения системы в одном из четырёх перечисленных состояний.


Мы будем говорить, что каоны «независимы», если знание о состоянии одного из них не даёт нам информации о состоянии другого. И у этой таблицы есть такое свойство. Если первый каон (пирожное) квадратный, мы всё ещё не знаем форму второго. И наоборот, форма второго ничего не говорит нам о форме первого.

С другой стороны, мы скажем, что два каона запутаны, если информация об одном из них улучшает наши знания о другом. Вторая табличка покажет нам сильную запутанность. В этом случае, если первый каон будет круглым, мы будем знать, что второй тоже круглый. А если первый каон квадратный, то таким же будет и второй. Зная форму одного, мы однозначно определим форму другого.

Квантовая версия запутанности выглядит, по сути, также – это отсутствие независимости. В квантовой теории состояния описываются математическими объектами под названием волновая функция. Правила, объединяющие волновые функции с физическими возможностями, порождают очень интересные сложности, которые мы обсудим позже, но основное понятие о запутанном знании, которое мы продемонстрировали для классического случая, остаётся тем же.

Хотя пирожные нельзя считать квантовыми системами, запутанность квантовых систем возникает естественным путём – например, после столкновений частиц. На практике незапутанные (независимые) состояния можно считать редкими исключениями, поскольку при взаимодействии систем между ними возникают корреляции.

Рассмотрим, к примеру, молекулы. Они состоят из подсистем – конкретно, электронов и ядер. Минимальное энергетическое состояние молекулы, в котором она обычно и находится, представляет собой сильно запутанное состояние электронов и ядра, поскольку расположение этих составляющих частиц никак не будет независимым. При движении ядра электрон движется с ним.

Вернёмся к нашему примеру. Если мы запишем Φ■, Φ● как волновые функции, описывающие систему 1 в её квадратных или круглых состояниях и ψ■, ψ● для волновых функций, описывающих систему 2 в её квадратных или круглых состояниях, тогда в нашем рабочем примере все состояния можно описать, как:

Независимые: Φ■ ψ■ + Φ■ ψ● + Φ● ψ■ + Φ● ψ●

Запутанные: Φ■ ψ■ + Φ● ψ●

Независимую версию также можно записать, как:

(Φ■ + Φ●)(ψ■ + ψ●)

Отметим, как в последнем случае скобки чётко разделяют первую и вторую системы на независимые части.

Существует множество способов создания запутанных состояний. Один из них – измерить составную систему, дающую вам частичную информацию. Можно узнать, например, что две системы договорились быть одной формы, не зная при этом, какую именно форму они выбрали. Это понятие станет важным чуть позже.

Более характерные последствия квантовой запутанности, такие, как эффекты Эйнштейна-Подольского-Розена (EPR) и Гринберга-Хорна-Зейлингера (GHZ), возникают из-за её взаимодействия ещё с одним свойством квантовой теории под названием «принцип дополнительности». Для обсуждения EPR и GHZ позвольте мне сначала представить вам этот принцип.

До этого момента мы представляли, что каоны бывают двух форм (квадратные и круглые). Теперь представим, что ещё они бывают двух цветов – красного и синего. Рассматривая классические системы, например, пирожные, это дополнительное свойство означало бы, что каон может существовать в одном из четырёх возможных состояний: красный квадрат, красный круг, синий квадрат и синий круг.

Но квантовые пирожные – квантожные… Или квантоны… Ведут себя совсем по-другому. То, что квантон в каких-то ситуациях может обладать разной формой и цветом не обязательно означает, что он одновременно обладает как формой, так и цветом. Фактически, здравый смысл, которого требовал Эйнштейн от физической реальности, не соответствует экспериментальным фактам, что мы скоро увидим.

Мы можем измерить форму квантона, но при этом мы потеряем всю информацию о его цвете. Или мы можем измерить цвет, но потеряем информацию о его форме. Согласно квантовой теории, мы не можем одновременно измерить и форму и цвет. Ничей взгляд на квантовую реальность не обладает полнотой; приходится принимать во внимание множество разных и взаимоисключающих картин, у каждой из которых есть своё неполное представление о происходящем. Это и есть суть принципа дополнительности, такая, как её сформулировал Нильс Бор.

В результате квантовая теория заставляет нас быть осмотрительными в приписывании свойствам физической реальности. Во избежание противоречий приходится признать, что:

Не существует свойства, если его не измерили.
Измерение – активный процесс, изменяющий измеряемую систему

II

Теперь опишем две образцовые, но не классические, иллюстрации странностей квантовой теории. Обе были проверены в строгих экспериментах (в реальных экспериментах люди меряют не формы и цвета пирожных, а угловые моменты электронов).

Альберт Эйнштейн, Борис Подольский и Натан Розен (EPR) описали удивительный эффект, возникающий при запутанности двух квантовых систем. EPR-эффект объединяет особую, экспериментально достижимую форму квантовой запутанности с принципом дополнительности.

EPR-пара состоит из двух квантонов, у каждого из которых можно измерить форму или цвет (но не то и другое сразу). Предположим, что у нас есть множество таких пар, все они одинаковые, и мы можем выбирать, какие измерения мы проводим над их компонентами. Если мы измерим форму одного из членов EPR-пары, мы с одинаковой вероятностью получим квадрат или круг. Если измерим цвет, то с одинаковой вероятностью получим красный или синий.

Интересные эффекты, казавшиеся EPR парадоксальными, возникают, когда мы проводим измерения обоих членов пары. Когда мы меряем цвет обоих членов, или их форму, мы обнаруживаем, что результаты всегда совпадают. То есть, если мы обнаружим, что один из них красный и затем меряем цвет второго, мы также обнаруживаем, что он красный – и т.п. С другой стороны, если мы измеряем форму одного и цвет другого, никакой корреляции не наблюдается. То есть, если первый был квадратом, то второй с одинаковой вероятностью может быть синим или красным.

Согласно квантовой теории, мы получим такие результаты, даже если две системы будет разделять огромное расстояние и измерения будут проведены почти одновременно. Выбор типа измерений в одном месте, судя по всему, влияет на состояние системы в другом месте. Это «пугающее дальнодействие», как называл его Эйнштейн, по-видимому, требует передачу информации – в нашем случае, информации о проведённом измерении – со скоростью, превышающей скорость света.

Но так ли это? Пока я не узнаю, какой результат получили вы, я не знаю, чего ожидать мне. Я получаю полезную информацию, когда я узнаю ваш результат, а не когда вы проводите измерение. И любое сообщение, содержащее полученный вами результат, необходимо передать каким-либо физическим способом, медленнее скорости света.

При дальнейшем изучении парадокс ещё больше разрушается. Давайте рассмотрим состояние второй системы, если измерение первой дало красный цвет. Если мы решим мерить цвет второго квантона, мы получим красный. Но по принципу дополнительности, если мы решим измерить его форму, когда он находится в «красном» состоянии, у нас будут равные шансы на получение квадрата или круга. Поэтому, результат EPR логически предопределён. Это просто пересказ принципа дополнительности.

Нет парадокса и в том, что удалённые события коррелируют. Ведь если мы положим одну из двух перчаток из пары в коробки и отправим их в разные концы планеты, неудивительно, что посмотрев в одну коробку, я могу определить, на какую руку предназначена другая перчатка. Точно так же, во всех случаях корреляция пар EPR должна быть зафиксирована на них, когда они находятся рядом и потому они могут выдержать последующее разделение, будто бы имея память. Странность EPR-парадокса не в самой по себе возможности корреляции, а в возможности её сохранения в виде дополнений.

III

Дэниел Гринбергер, Майкл Хорн и Антон Зейлингер открыли ещё один прекрасный пример квантовой запутанности. ОН включает три наших квантона, находящихся в специально подготовленном запутанном состоянии (GHZ-состоянии). Мы распределяем каждый из них разным удалённым экспериментаторам. Каждый из них выбирает, независимо и случайно, измерять ли цвет или форму и записывает результат. Эксперимент повторяют многократно, но всегда с тремя квантонами в GHZ-состоянии.

Каждый отдельно взятый экспериментатор получает случайные результаты. Измеряя форму квантона, он с равной вероятностью получает квадрат или круг; измеряя цвет квантона, он с равной вероятностью получает красный или синий. Пока всё обыденно.

Но когда экспериментаторы собираются вместе и сравнивают результаты, анализ показывает удивительный результат. Допустим, мы будем называть квадратную форму и красный цвет «добрыми», а круги и синий цвет – «злыми». Экспериментаторы обнаруживают, что если двое из них решили измерить форму, а третий – цвет, тогда либо 0, либо 2 результата измерений получаются «злыми» (т.е. круглыми или синими). Но если все трое решают измерить цвет, то либо 1 либо 3 измерения получаются злыми. Это предсказывает квантовая механика, и именно это и происходит.

Вопрос: количество зла чётное или нечётное? В разных измерениях реализовываются обе возможности. Нам приходится отказаться от этого вопроса. Не имеет смысла рассуждать о количестве зла в системе без связи с тем, как его измеряют. И это приводит к противоречиям.

Эффект GHZ, как описывает его физик Сидни Колман, это «оплеуха от квантовой механики». Он разрушает привычное, полученное из опыта ожидание того, что у физических систем есть предопределённые свойства, независимые от их измерения. Если бы это было так, то баланс доброго и злого не зависел бы от выбора типов измерений. После того, как вы примете существование GHZ-эффекта, вы его не забудете, а ваш кругозор будет расширен.

IV

Пока что мы рассуждаем о том, как запутанность не позволяет назначить уникальные независимые состояния нескольким квантонам. Такие же рассуждения применимы к изменениям одного квантона, происходящим со временем.

Мы говорим об «запутанных историях», когда системе невозможно присвоить определённое состояние в каждый момент времени. Так же, как в традиционной запутанности мы исключаем какие-то возможности, мы можем создать и запутанные истории, проводя измерения, собирающие частичную информацию о прошлых событиях. В простейших запутанных историях у нас есть один квантон, изучаемый нами в два разных момента времени. Мы можем представить ситуацию, когда мы определяем, что форма нашего квантона оба раза была квадратной, или круглой оба раза, но при этом остаются возможными обе ситуации. Это темпоральная квантовая аналогия простейшим вариантам запутанности, описанным ранее.

Используя более сложный протокол, мы можем добавить чуть-чуть дополнительности в эту систему, и описать ситуации, вызывающие «многомировое» свойство квантовой теории. Наш квантон можно подготовить в красном состоянии, а затем измерить и получить голубое. И как в предыдущих примерах, мы не можем на постоянной основе присвоить квантону свойство цвета в промежутке между двумя измерениями; нет у него и определённой формы. Такие истории реализовывают, ограниченным, но полностью контролируемым и точным способом, интуицию, свойственную картинке множественности миров в квантовой механике. Определённое состояние может разделиться на две противоречащие друг другу исторические траектории, которые затем снова соединяются.

Эрвин Шрёдингер, основатель квантовой теории, скептически относившийся к её правильности, подчёркивал, что эволюция квантовых систем естественным образом приводит к состояниям, измерение которых может дать чрезвычайно разные результаты. Его мысленный эксперимент с «котом Шрёдингера» постулирует, как известно, квантовую неопределённость, выведенную на уровень влияния на смертность кошачьих. До измерения коту невозможно присвоить свойство жизни (или смерти). Оба, или ни одно из них, существуют вместе в потустороннем мире возможностей.

Повседневный язык плохо приспособлен для объяснения квантовой дополнительности, в частности потому, что повседневный опыт её не включает. Практические кошки взаимодействуют с окружающими молекулами воздуха, и другими предметами, совершенно по-разному, в зависимости от того, живы они или мертвы, поэтому на практике измерение проходит автоматически, и кот продолжает жить (или не жить). Но истории с запутанностью описывают квантоны, являющиеся котятами Шрёдингера. Их полное описание требует, чтобы мы принимали к рассмотрению две взаимоисключающие траектории свойств.

Контролируемая экспериментальная реализация запутанных историй – вещь деликатная, поскольку требует сбора частичной информации о квантонах. Обычные квантовые измерения обычно собирают всю информацию сразу – к примеру, определяют точную форму или точный цвет – вместо того, чтобы несколько раз получить частичную информацию. Но это можно сделать, хотя и с чрезвычайными техническими трудностями. Этим способом мы можем присвоить определённый математический и экспериментальный смысл распространению концепции «множественности миров» в квантовой теории, и продемонстрировать её реальность.

· Квантовая хромодинамика · Стандартная модель · Квантовая гравитация

См. также: Портал:Физика

Ква́нтовая запу́танность (см. раздел « ») - квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий , что находится в логическом противоречии с принципом локальности . Например, можно получить пару фотонов , находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот.

История изучения

Спор Бора и Эйнштейна, ЭПР-Парадокс

Копенгагенская интерпретация квантовой механики рассматривает волновую функцию до её измерения как находящуюся в суперпозиции состояний .
На рисунке изображены орбитали атома водорода с распределениями плотностей вероятности (чёрный - нулевая вероятность, белый - наибольшая вероятность). В соответствии с Копенгагенской интерпретацией при измерении происходит необратимый коллапс волновой функции и та принимает определённое значение, при этом предсказуем только набор возможных значений, но не результат конкретного измерения.

В продолжение начавшихся споров, в 1935 году Эйнштейн, Подольский и Розен сформулировали ЭПР-парадокс , который должен был показать неполноту предлагаемой модели квантовой механики. Их статья «Можно ли считать квантово-механическое описание физической реальности полным?» была опубликована в №47 журнала «Physical Review» .

В ЭПР-парадоксе мысленно нарушался принцип неопределённости Гейзенберга : при наличии двух частиц, имеющих общее происхождение, можно измерить состояние одной частицы и по нему предсказать состояние другой, над которой измерение ещё не производилось. Анализируя в том же году подобные теоретически взаимозависимые системы, Шрёдингер назвал их «запутанными» (англ. entangled ) . Позднее англ. entangled и англ. entanglement стали общепринятыми терминами в англоязычных публикациях . Следует отметить, что сам Шрёдингер считал частицы запутанными, только пока они физически взаимодействовали друг с другом. При удалении за пределы возможных взаимодействий запутанность исчезала . То есть значение термина у Шрёдингера отличается от того, которое подразумевается в настоящее время.

Эйнштейн не рассматривал ЭПР-парадокс как описание какого-либо действительного физического феномена. Это была именно мысленная конструкция, созданная для демонстрации противоречий принципа неопределённости. В 1947 году в письме Максу Борну он назвал подобную связь между запутанными частицами «жутким дальнодействием» (нем. spukhafte Fernwirkung , англ. spooky action at a distance в переводе Борна) :

Поэтому я не могу в это поверить, так как (эта) теория непримирима с принципом того, что физика должна отражать реальность во времени и пространстве, без (неких) жутких дальнодействий.

Оригинальный текст (нем.)

Ich kann aber deshalb nicht ernsthaft daran glauben, weil die Theorie mit dem Grundsatz unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum darstellen soll, ohne spukhafte Fernwirkungen.

- «Entangled systems: new directions in quantum physics»

Уже в следующем номере «Physical Review» Бор опубликовал свой ответ в статье с таким же заголовком, как и у авторов парадокса . Сторонники Бора посчитали его ответ удовлетворительным, а сам ЭПР-парадокс - вызванным неправильным пониманием сути «наблюдателя» в квантовой физике Эйнштейном и его сторонниками . В целом большинство физиков просто устранилось от философских сложностей Копенгагенской интерпретации. Уравнение Шрёдингера работало, предсказания совпадали с результатами, и в рамках позитивизма этого было достаточно. Гриббин пишет по этому поводу : «чтобы добраться из точки А в точку Б, водителю необязательно знать, что происходит под капотом его машины». Эпиграфом же к своей книге Гриббин поставил слова Фейнмана :

Думаю, я могу ответственно заявить, что никто не понимает квантовую механику. Если есть возможность, прекратите спрашивать себя „Да как же это возможно?“ - так как вас занесёт в тупик, из которого ещё никто не выбирался.

Неравенства Белла, экспериментальные проверки неравенств

Такое состояние дел оказалось не слишком удачным для развития физической теории и практики. «Запутанность» и «жуткие дальнодействия» игнорировались почти 30 лет , пока ими не заинтересовался ирландский физик Джон Белл . Вдохновлённый идеями Бома (см. Теория де Бройля - Бома), Белл продолжил анализ ЭПР-парадокса и в 1964 сформулировал свои неравенства . Весьма упрощая математические и физические составляющие, можно сказать, что из работы Белла следовали две однозначно распознаваемые ситуации при статистических измерениях состояний запутанных частиц. Если состояния двух запутанных частиц определены в момент разделения, то должно выполняться одно неравенство Белла. Если состояния двух запутанных частиц неопределены до измерения состояния одной из них, то должно выполняться другое неравенство.

Неравенства Белла предоставили теоретическую базу для возможных физических экспериментов, однако по состоянию на 1964 год техническая база не позволяла ещё их поставить. Первые успешные эксперименты по проверке неравенств Белла были осуществлены Клаузером (англ.) русск. и Фридманом в 1972 году . Из результатов следовала неопределённость состояния пары запутанных частиц до проведения измерения над одной из них. И всё же до 80-х годов XX века квантовая сцепленность рассматривалась большинством физиков как «не новый неклассический ресурс, который можно использовать, а скорее как конфуз, ждущий окончательного разъяснения» .

Однако за экспериментами группы Клаузера последовали эксперименты Аспэ (англ.) русск. в 1981 году . В классическом эксперименте Аспэ (см. ) два потока фотонов с нулевым суммарным спином , вылетавшие из источника S , направлялись на призмы Николя a и b . В них за счёт двойного лучепреломления происходило разделение поляризаций каждого из фотонов на элементарные, после чего пучки направлялись на детекторы D+ и D– . Сигналы от детекторов через фотоумножители поступали в регистрирующее устройство R , где вычислялось неравенство Белла.

Результаты, полученные как в опытах Фридмана–Клаузера, так и в опытах Аспэ, чётко говорили в пользу отсутствия эйнштейновского локального реализма . «Жуткое дальнодействие» из мысленного эксперимента окончательно стало физической реальностью. Последний удар по локальности был нанесён в 1989 году многосвязными состояниями Гринбергера - Хорна - Цайлингера (англ.) русск. , заложившими базис квантовой телепортации . В 2010 году Джон Клаузер (англ.) русск. , Ален Аспэ (англ.) русск. и Антон Цайлингер стали лауреатами премии Вольфа по физике «за фундаментальный концептуальный и экспериментальный вклад в основы квантовой физики, в частности за серию возрастающих по сложности проверок неравенств Белла (или расширенных версий этих неравенств) с использованием запутанных квантовых состояний» .

Современный этап

В 2008 году группе швейцарских исследователей из Университета Женевы удалось разнести два потока запутанных фотонов на расстояние 18 километров. Помимо прочего, это позволило произвести временны́е измерения с недостижимой ранее точностью. В результате было установлено, что если некое скрытое взаимодействие и происходит, то скорость его распространения должна как минимум в 100 000 раз превышать скорость света в вакууме . При меньшей скорости временные задержки были бы замечены .

Летом того же года другой группе исследователей из австрийского (англ.) русск. , включая Цайлингера, удалось поставить ещё более масштабный эксперимент, разнеся потоки запутанных фотонов на 144 километра, между лабораториями на островах Ла Пальма и Тенерифе . Обработка и анализ столь масштабного эксперимента продолжаются, последняя версия отчёта была опубликована в 2010 году . В данном эксперименте удалось исключить возможное влияние недостаточного расстояния между объектами в момент измерения и недостаточной свободы выбора настроек измерения. В результате были ещё раз подтверждены квантовая запутанность и, соответственно, нелокальная природа реальности. Правда, осталось третье возможное влияние - недостаточно полной выборки. Эксперимент, в котором все три потенциальных влияния будут исключены одновременно, на сентябрь 2011 года является вопросом будущего.

В большинстве экспериментов с запутанными частицами используются фотоны. Это объясняется относительной простотой получения запутанных фотонов и их передачи в детекторы, а также бинарной природой измеряемого состояния (положительная или отрицательная спиральность). Однако явление квантовой запутанности существует и для других частиц и их состояний. В 2010 году международный коллектив учёных из Франции, Германии и Испании получил и исследовал запутанные квантовые состояния электронов , то есть частиц с массой, в твёрдом сверхпроводнике из углеродных нанотрубок . В 2011 году исследователям из удалось создать состояние квантовой запутанности между отдельным атомом рубидия и конденсатом Бозе-Эйнштейна , разнесёнными на расстояние 30 метров .

Название явления в русскоязычных источниках

При устойчивом английском термине Quantum entanglement , достаточно последовательно использующимся в англоязычных публикациях, русскоязычные работы демонстрируют широкое разнообразие узуса . Из встречающихся в источниках по теме терминов можно назвать (в алфавитном порядке):

Такое разнообразие можно объяснить несколькими причинами, в том числе объективным наличием двух обозначаемых объектов: а) само состояние (англ. quantum entanglement ) и б) наблюдаемые эффекты в этом состоянии (англ. spooky action at a distance ), которые во многих русскоязычных работах различаются по контексту, а не терминологически.

Математическая формулировка

Получение запутанных квантовых состояний

В простейшем случае источником S потоков запутанных фотонов служит определённый нелинейный материал, на который направляется лазерный поток определённой частоты и интенсивности (схема с одним эммитером) . В результате спонтанного параметрического рассеяния (СПР) на выходе получаются два конуса поляризации H и V , несущие пары фотонов в запутанном квантовом состоянии (бифотонов) .

Если вас еще не поразили чудеса квантовой физики, то после этой статьи ваше мышление уж точно перевернется. Сегодня я расскажу, что такое квантовая запутанность, но простыми словами, чтобы любой человек понял, что это такое.

Запутанность как магическая связь

После того, как были открыты необычные эффекты, происходящие в микромире, ученые пришли к интересному теоретическому предположению. Оно именно следовало из основ квантовой теории.

В прошлой я рассказывал о том, что электрон ведет себя очень странно.

Но запутанность квантовых, элементарных частиц вообще противоречит какому-либо здравому смыслу, выходит за рамки любого понимания.

Если они взаимодействовали друг с другом, то после разъединения между ними остается магическая связь, даже если их разнести на любое, сколь угодно большое расстояние.

Магическая в том смысле, что информация между ними передается мгновенно.

Как известно из квантовой механики частица до измерения находится в суперпозиции, то есть имеет сразу несколько параметров, размыта в пространстве, не имеет точное значение спина. Если над одной из пары ранее взаимодействующих частиц произвести измерение, то есть произвести коллапс волновой функции, то вторая сразу, мгновенно отреагирует на это измерение. И не важно, какое расстояние между ними. Фантастика, не правда ли.

Как известно из теории относительности Эйнштейна ничто не может превышать скорость света. Чтобы информация дошла от одной частицы до второй, нужно по крайне мере затратить время прохождения света. Но одна частица именно мгновенно реагирует на измерение второй. Информация при скорости света дошла бы до нее уже позже. Все это не укладывается в здравый смысл.

Если разделить пару элементарных частичек с нулевым общим параметром спина, то одна должна иметь отрицательный спин, а вторая положительный. Но до измерения значение спина находится в суперпозиции. Как только мы измерили спин у первой частички, увидели, что он имеет положительное значение, так сразу вторая приобретает отрицательный спин. Если же наоборот первая частичка приобретает отрицательное значение спина, то вторая мгновенно положительное значение.

Или такая аналогия.

У нас имеется два шара. Один черный, другой белый. Мы их накрыли непрозрачными стаканами, не видим, где какой. Мешаем как в игре наперстки.

Если открыли один стакан и увидели, что там белый шар, значит во втором стакане черный. Но сначала мы не знаем, где какой.

Так и с элементарными частичками. Но они до того, как на них посмотреть, находятся в суперпозиции. До измерения шары как бы бесцветны. Но разрушив суперпозицию одного шара и увидев, что он белый, то второй сразу становится черным. И это происходит мгновенно, будь хоть один шар на земле, а второй в другой галактике. Чтобы свет дошел от одного шара до другого в нашем случае, допустим нужно сотни лет, а второй шар узнает, что произвели измерение над вторым, повторяю, мгновенно. Между ними запутанность.

Понятно, что Эйнштейн, да и многие другие физики не принимали такой исход событий, то есть квантовую запутанность. Он считал выводы квантовой физики неверными, неполными, предполагал, что не хватает каких-то скрытых переменных.

Вышеописанный парадокс Эйнштейна наоборот придумал, чтобы показать, что выводы квантовой механики не верны, потому что запутанность противоречит здравому смыслу.

Этот парадокс назвали парадокс Эйнштейна - Подольского - Розена, сокращённо ЭПР-парадокс.

Но проведенные эксперименты с запутанностью уже позже А. Аспектом и другими учеными, показали, что Эйнштейн был не прав. Квантовая запутанность существует.

И это уже были не теоретические предположения, вытекающие из уравнений, а реальные факты множества экспериментов по квантовой запутанности. Ученые это увидели вживую, а Эйнштейн умер, так и не узнав правду.

Частицы действительно взаимодействуют мгновенно, ограничения по скорости света им не помеха. Мир оказался куда интереснее и сложнее.

При квантовой запутанности происходит, повторю, мгновенная передача информации, образуется магическая связь.

Но как такое может быть?

Сегодняшняя квантовая физика отвечает на этот вопрос изящным образом. Между частицами происходит мгновенная связь не из-за того, что информация передается очень быстро, а потому что на более глубоком уровне они просто не разделены, а все еще находятся вместе. Они находятся в так называемой квантовой запутанности.

То есть состояние запутанности это такое состояние системы, где по каким-то параметрам или значениям, она не может быть разделена на отдельные, полностью самостоятельные части.

Например, электроны после взаимодействия могут быть разделены на большое расстояние в пространстве, но их спины находятся все еще вместе. Поэтому во время экспериментов спины мгновенно согласуются между собой.

Понимаете, к чему это ведет?

Сегодняшние познания современной квантовой физики на основе теории декогеренции сводятся к одному.

Существует более глубокая, непроявленная реальность. А то, что мы наблюдаем как привычный классический мир лишь малая часть, частный случай более фундаментальной квантовой реальности.

В ней нет пространства, времени, каких-то параметров частиц, а лишь информация о них, потенциальная возможность их проявления.

Именно этот факт изящно и просто объясняет, почему возникает коллапс волновой функции, рассмотренный в предыдущей статье, квантовую запутанность и другие чудеса микромира.

Сегодня, говоря о квантовой запутанности, вспоминают потусторонний мир.

То есть на более фундаментальном уровне элементарная частица непроявленная. Она находится одновременно в нескольких точках пространства, имеет несколько значений спинов.

Затем по каким-то параметрам она может проявиться в нашем классическом мире в ходе измерения. В рассмотренном выше эксперименте две частицы уже имеют конкретное значение координат пространства, но спины их находятся все еще в квантовой реальности, непроявленные. Там нет пространства и времени, поэтому спины частиц сцеплены вместе, несмотря на огромное расстояние между ними.

А когда мы смотрим, какой спин у частицы, то есть производим измерение, мы как бы вытаскиваем спин из квантовой реальности в наш обычный мир. А нам кажется, что частицы обмениваются информацией мгновенно. Просто они были все еще вместе по одному параметру, хоть и находились далеко друг от друга. Их раздельность на самом деле есть иллюзия.

Все это кажется странным, непривычным, но этот факт уже подтверждается многими экспериментами. На основе магической запутанности создаются квантовые компьютеры.

Реальность оказалась намного сложнее и интереснее.

Принцип квантовой запутанности не стыкуется с обычным нашим взглядом на мир.


Вот как объясняет квантовую запутанность физик-ученый Д.Бом.

Допустим, мы наблюдаем за рыбой в аквариуме. Но в силу каких-то ограничений, мы можем смотреть не на аквариум, как он есть, а лишь на его проекции, снимаемые двумя камерами спереди и сбоку. То есть мы наблюдаем за рыбой, смотря на два телевизора. Нам кажутся рыбы разными, так как мы снимаем ее одной камерой в анфас, другой в профиль. Но чудесным образом их движения четко согласуются. Как только рыба с первого экрана поворачивается, вторая мгновенно делает также поворот. Мы удивляемся, не догадываясь, что это одна и та же рыба.

Так и в квантовом эксперименте с двумя частицами. Из-за своих ограничений нам кажется, что спины двух, ранее взаимодействующих частиц, не зависимы друг от друга, ведь теперь частицы находятся далеко друг от друга. Но на самом деле они все еще вместе, но находятся в квантовой реальности, в нелокальном источнике. Мы просто смотрим не на реальность, как она есть на самом деле, а с искажением, в рамках классической физики.

Квантовая телепортация простыми словами

Когда ученые узнали о квантовой запутанности и мгновенной передаче информации, многие задались вопросом: можно ли осуществить телепортацию?

Это оказалось действительно возможным.

Уже проведено множество экспериментов по телепортации.

Суть метода легко можно понять, если вы поняли общий принцип запутанности.

Имеется частица, например электрон А и две пары запутанных электронов В и С. Электрон А и пара В, С находятся в разных точках пространства, неважно как далеко. А теперь переведем в квантовую запутанность частички А и В, то есть объединим их. Теперь С становится точно такой же как А, потому что общее их состояние не меняется. То есть частица А как бы телепортируется в частицу С.

Сегодня проведены уже более сложные опыты по телепортации.

Конечно, все опыты пока проводятся только с элементарными частицами. Но согласитесь, это уже невероятно. Ведь все мы состоим из тех же частиц, ученые говорят, что телепортация макрообъектов теоретически ничем не отличается. Нужно лишь решить множество технических моментов, а это лишь вопрос времени. Может быть, человечество дойдет в своем развитии до способности телепортировать большие объекты, да и самого человека.

Квантовая реальность

Квантовая запутанность есть целостность, неразрывность, единение на более глубоком уровне.

Если по каким-то параметрам частицы находятся в квантовой запутанности, то по этим параметрам их просто нельзя разделить на отдельные части. Они взаимозависимы. Такие свойства просто фантастические с точки зрения привычного мира, запредельные, можно сказать потусторонние и трансцендентные. Но это факт, от которого уже никуда не деться. Пора это уже признать.

Но к чему все это ведет?

Оказывается, о таком положении вещей давно говорили многие духовные учения человечества.

Видимый нами мир, состоящий из материальных объектов это не основа реальности, а лишь малая ее часть и не самая главная. Существует трансцендентная реальность, которая задает, определяет все, что происходит с нашим миром, а значит и с нами.

Именно там кроются настоящие ответы на извечные вопросы о смысле жизни, настоящего развития человека, обретения счастья и здоровья.

И это не пустые слова.

Все это приводит к переосмыслению жизненных ценностей, пониманию того, что кроме бессмысленной гонкой за материальными благами есть что-то более важное и высокое. И эта реальность не где-то там, она окружает нас повсюду, она пронизывает нас, она как говорится "на кончиках наших пальцев".

Но давайте об этом поговорим в следующих статьях.

А сейчас посмотрите видео о квантовой запутанности.

От квантовой запутанности мы плавно переходим к теории . Об этом в следующей статье.

Квантовая запутанность - это квантовомеханическое явление, которое стали изучать на практике сравнительно недавно - в 1970-е годы. Оно заключается в следующем. Представим себе, что в результате какого-нибудь события родились одновременно два фотона. Получить пару квантово-запутанных фотонов можно, например, светя на нелинейный кристалл лазером с определенными характеристиками. У порождаемых фотонов в паре могут быть разные частоты (и длины волны), но при этом сумма их частот равна частоте исходного возбуждения. У них также ортогональные поляризации в базисе кристаллической решетки, что облегчает их пространственное разделение. При рождении пары частиц должны выполняться законы сохранения, а значит, суммарные характеристики (поляризация, частота) двух частиц имеют заранее известное, строго определенное значение. Из этого следует, что, зная характеристику одного фотона, мы совершенно точно можем узнать характеристику другого. Согласно принципам квантовой механики, до момента измерения частица находится в суперпозиции нескольких возможных состояний, а при измерении суперпозиция снимается и частица оказывается в каком-то одном состоянии. Если проанализировать много частиц, то в каждом состоянии окажется определенный процент частиц, соответствующий вероятности этого состояния в суперпозиции.

А что же происходит с суперпозицией состояний у запутанных частиц в момент измерения состояния одной из них? Парадоксальность и контринтуитивность квантовой запутанности заключается в том, что характеристика второго фотона оказывается определена ровно в тот момент, когда мы измерили характеристику первого. Нет, это не теоретическое построение, это суровая правда окружающего мира, подтвержденная экспериментально. Да, она подразумевает наличие взаимодействия, предающегося с бесконечно большой скоростью, превышающей даже скорость света. Как этим пользоваться на благо человечества пока не очень понятно. Есть идеи применения для вычислений на квантовом компьютере, криптографии и коммуникации.

Ученым из Вены удалось разработать совершенно новую и крайне контринтуитивную методику получения изображений, основанную на квантовой природе света. В их системе изображение формирует свет, никогда не взаимодействовавший с объектом. В основе технологии лежит принцип квантовой запутанности. Статья об этом опубликована в журнале Nature. В исследовании принимали участие сотрудники Института квантовой оптики и квантовой информации (Institute for Quantum Optics and Quantum Information, IQOQI) Венского центра квантовой науки и технологии (Vienna Center for Quantum Science and Technology, VCQ) и Венского университета.

В эксперименте венских ученых один из пары запутанных фотонов обладал длиной волны в инфракрасной части спектра, и именно он проходил через образец. Его собрат обладал длиной волны, соответствующей красному свету и мог детектироваться камерой. Пучок света, генерируемый лазером, делился на две половины, и половины направлялись на два нелинейных кристалла. Объект помещался между двумя кристаллами. Он представлял собой вырезанный силуэт кота - в честь перекочевавшего уже в фольклор персонажа умозрительного эксперимента Эрвина Шредингера. На него направлялся инфракрасный пучок фотонов с первого кристалла. Затем эти фотоны проходили через второй кристалл, где прошедшие сквозь изображение кота фотоны смешивались со свежеродившимися инфракрасными фотонами так, что понять, в каком из двух кристаллов они родились, было совершенно невозможно. Более того, камера и вовсе не детектировала инфракрасные фотоны. Оба пучка красных фотонов объединялись и отправлялись на приемное устройство. Оказалось, что благодаря эффекту квантовой запутанности они хранили всю нужную для создания изображения информацию об объекте.

К аналогичным результатам привел эксперимент, в котором в качестве изображения использовалась не непрозрачная пластина с вырезанным контуром, а объемное силиконовое изображение, не поглощавшее света, но замедлявшее прохождение инфракрасного фотона и создающее разность фаз между фотонами, прошедшими через разные части изображения. Оказалось, что такая пластика оказывала влияние и на фазу красных фотонов, находящихся в состоянии квантовой запутанности с инфракрасными фотонами, но никогда не проходившими через изображение.

Квантовая запутанность

Квантовая запутанность (сцепленность) (англ. Entanglement) - квантовомеханическое явление, при котором квантовое состояние двух или большего числа объектов должно описываться во взаимосвязи друг с другом, даже если отдельные объекты разнесены в пространстве. Вследствие этого возникают корреляции между наблюдаемыми физическими свойствами объектов. Например, можно приготовить две частицы, находящиеся в едином квантовом состоянии так, что когда одна частица наблюдается в состоянии со спином, направленным вверх, то спин другой оказывается направленным вниз, и наоборот, и это несмотря на то, что согласно квантовой механике, предсказать, какие фактически каждый раз получатся направления, невозможно. Иными словами, создаётся впечатление, что измерения, проводимые над одной системой, оказывают мгновенное воздействие на запутанную с ней. Однако то, что понимается под информацией в классическом смысле, всё-таки не может быть передано через запутанность быстрее, чем со скоростью света.
Раньше исходный термин «entanglement» переводился противоположно по смыслу - как запутанность, но смысл слова заключается в сохранении связи даже после сложной биографии квантовой частицы. Так что при наличии связи между двумя частицами в клубке физической системы, «подергав» одну частицу, можно было определить другую.

Квантовая запутанность является основой таких будущих технологий, как квантовый компьютер и квантовая криптография, а также она была использована в опытах по квантовой телепортации. В теоретическом и философском плане данное явление представляет собой одно из наиболее революционных свойств квантовой теории, так как можно видеть, что корреляции, предсказываемые квантовой механикой, совершенно несовместимы с представлениями о, казалось бы, очевидной локальности реального мира, при которой информация о состоянии системы может передаваться только посредством её ближайшего окружения. Различные взгляды на то, что в действительности происходит во время процесса квантовомеханического запутывания, ведут к различным интерпретациям квантовой механики.

История вопроса

В 1935 г. Эйнштейн, Подольский и Розен сформулировали знаменитый Парадокс Эйнштейна - Подольского - Розена, который показал, что из-за связности квантовая механика становится нелокальной теорией. Известно, как Эйнштейн высмеивал связность, называя его «кошмарным дальнодействием. Естественно нелокальная связность опровергала постулат ТО о предельной скорости света (передаче сигнала).

С другой стороны, квантовая механика отлично зарекомендовала себя в предсказании экспериментальных результатов, и фактически наблюдались даже сильные корреляции, происходящие благодаря феномену запутывания. Есть способ, который позволяет, казалось бы, успешно объяснить квантовое запутывание - подход «теории скрытых параметров» при котором за корреляции отвечают определённые, но неизвестные микроскопические параметры. Однако, в 1964 г. Дж. С. Белл показал, что «хорошую» локальную теорию таким образом построить всё равно не удастся, то есть, запутывание, предсказываемое квантовой механикой, можно экспериментально отличить от результатов, предсказываемых широким классом теорий с локальными скрытыми параметрами. Результаты последующих экспериментов дали ошеломляющее подтверждение квантовой механики. Некоторые проверки показывают, что в этих экспериментах есть ряд узких мест, но общепризнано, что они несущественны.

Связность приводит к интересным взаимоотношениям с принципом относительности, который утверждает, что информация не может переноситься с места на место быстрее, чем со скоростью света. Хотя две системы могут быть разделены большим расстоянием и быть при этом запутанными, передать через их связь полезную информацию невозможно, поэтому причинность не нарушается из-за запутанности. Это происходит по двум причинам:
1. результаты измерений в квантовой механике носят принципиально вероятностный характер;
2. теорема о клонировании квантового состояния запрещает статистическую проверку запутанных состояний.

Причины влияние частиц

В нашем мире существуют особые состояния нескольких квантовых частиц - запутанные состояния, у которых наблюдаются квантовые корреляции (вообще, корреляция - это взаимосвязь между событиями выше уровня случайных совпадений). Эти корреляции можно обнаружить экспериментально, что было сделано впервые свыше двадцати лет назад и сейчас уже рутинно используется в разнообразных экспериментах. В классическом (то есть неквантовом) мире существует два типа корреляций - когда одно событие является причиной другого или же когда у них обоих есть общая причина. В квантовой теории возникает третий тип корреляций, связанный с нелокальными свойствами запутанных состояний нескольких частиц. Этот третий тип корреляций трудно представить себе, пользуясь привычными бытовыми аналогиями. А может быть, эти квантовые корреляции есть результат какого-то нового, неизвестного до сих пор взаимодействия, благодаря которому запутанные частицы (и только они!) влияют друг на друга?

Сразу стоит подчеркнуть «ненормальность» такого гипотетического взаимодействия. Квантовые корреляции наблюдаются, даже если детектирование двух разнесенных на большое расстояние частиц происходит одновременно (в пределах погрешностей эксперимента). Значит, если такое взаимодействие и имеет место, то оно должно распространяться в лабораторной системе отсчета чрезвычайно быстро, со сверхсветовой скоростью. А из этого неизбежно следует, что в других системах отсчета это взаимодействие будет вообще мгновенным и даже будет действовать из будущего в прошлое (правда, не нарушая принцип причинности).

Суть эксперимента

Геометрия эксперимента. Пары запутанных фотонов порождались в Женеве, затем фотоны посылались вдоль оптоволоконных кабелей одинаковой длины (отмечены красным цветом) в два приемника (отмечены буквами APD), отстоящими друг от друга на 18 км. Изображение из обсуждаемой статьи в Nature

Идея эксперимента состоит в следующем: создадим два запутанных фотона и отправим их в два детектора, отстоящих как можно дальше друг от друга (в описываемом эксперименте расстояние между двумя детекторами было 18 км). При этом пути фотонов до детекторов сделаем по возможности одинаковыми, так чтобы моменты их детектирования были максимально близкими. В этой работе моменты детектирования совпадали с точностью примерно 0,3 наносекунды. Квантовые корреляции в этих условиях по-прежнему наблюдались. Значит, если предположить, что они «работают» за счет описанного выше взаимодействия, то его скорость должна превышать скорость света в сотню тысяч раз.
Такой эксперимент, на самом деле, проводился этой же группой и раньше. Новизна данной работы лишь в том, что эксперимент длился долго. Квантовые корреляции наблюдались непрерывно и не исчезали ни в какое время суток.
Почему это важно? Если гипотетическое взаимодействие переносится некоторой средой, то у этой среды будет выделенная система отсчета. Из-за вращения Земли лабораторная система отсчета движется относительно этой системы отсчета с разной скоростью. Это значит, что промежуток времени между двумя событиями детектирования двух фотонов будет для этой среды всё время разным, в зависимости от времени суток. В частности, будет и такой момент, когда эти два события для этой среды будут казаться одновременными. (Тут, кстати, используется тот факт из теории относительности, что два одновременных события будут одновременными во всех инерциальных системах отсчета, движущихся перпендикулярно соединяющей их линии).

Если квантовые корреляции осуществляются за счет описанного выше гипотетического взаимодействия и если скорость этого взаимодействия конечна (пусть и сколь угодно большая), то в этот момент корреляции бы исчезли. Поэтому непрерывное наблюдение корреляций в течение суток полностью закрыло бы эту возможность. А повторение такого эксперимента в разные времена года закрыло бы эту гипотезу даже с бесконечно быстрым взаимодействием в своей, выделенной системе отсчета.

К сожалению, этого достичь не удалось из-за неидеальности эксперимента. В этом эксперименте для того, чтобы сказать, что корреляции действительно наблюдаются, требуется накапливать сигнал в течение нескольких минут. Исчезновение корреляций, например, на 1 секунду этот эксперимент не смог бы заметить. Именно поэтому авторы не смогли полностью закрыть гипотетическое взаимодействие, а лишь получили ограничение на скорость его распространения в своей выделенной системе отсчета, что, конечно, сильно снижает ценность полученного результата.

А может быть...?

Читатель может спросить: а если всё же описанная выше гипотетическая возможность реализуется, но просто эксперимент из-за своей неидеальности ее проглядел, то означает ли это, что теория относительности неверна? Можно ли использовать этот эффект для сверхсветовой передачи информации или даже для перемещения в пространстве?

Нет. Описанное выше гипотетическое взаимодействие по построению служит единственной цели - это те «шестеренки», которые заставляют «работать» квантовые корреляции. Но уже доказано, что с помощью квантовых корреляций невозможно передать информацию быстрее скорости света. Поэтому каков бы ни был механизм квантовых корреляций, нарушить теорию относительности он не может.
© Игорь Иванов

См. Торсионные поля .
Основы Тонкого Мира - физический вакуум и торсионные поля . 4.

Квантовая запутанность.




Copyright © 2015 Любовь безусловная

Включайся в дискуссию
Читайте также
Маскированная депрессия: признаки расстройства, диагностика и лечение Маскированная депрессия
Биполярное расстройство - что это такое?
Осназ гру: невидимое видим, неслышимое слышим